Name:	
Instructor: _	

Math 10560, Final Exam: May 7, 2013

- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.
- No calculators are to be used.
- Turn off and put away all cell-phones and similar electronic devices.
- No head phones are not allowed.
- Put away all notes and formula sheets where they cannot be viewed.
- The exam lasts for two hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 15 pages of the test.
- Hand in the entire exam.

		PLEAS.	E MAR	K YOU	R ANSW	ERS W	ITH A	N X, no	ot a circ	ele!	
1.	(a)	(b)	(c)	(d)	(e)	15.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)	16.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)		(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)	18.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)		(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)	20.	,	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)		(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)	22.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)	23.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)	24.	(a)	(b)	(c)	(d)	(e)
 11.	(a)	(b)	(c)	(d)	(e)	25.	(a)	(b)	(c)	(d)	(e)
12.	(a)	(b)	(c)	(d)	(e)						
13.	(a)	(b)	(c)	(d)	(e)						
14.	(a)	(b)	(c)	(d)	(e)						

Name:

Instructor:

Multiple Choice

1.(6 pts.) Let $f(x) = \frac{e^x + 1}{1 - 2e^x}$. The inverse function $f^{-1}(x)$ is

- (a) $\ln(x-1) \ln(1+2x)$
- (b) $\ln(1-x) \ln 1 2x$
- (c) $\ln(1-2x) \ln(1+2x)$
- (d) $\ln(1-2x) \ln(1-x)$
- (e) $\ln(x-1) \ln(1-2x)$

2.(6 pts.) Let $f(x) = (3+x)e^{-x}$. Find $(f^{-1})'(3)$.

- (a) $\frac{1}{3}$ (b) $-\frac{1}{3}$ (c) -1 (d) $-\frac{1}{2}$ (e) $\frac{1}{2}$

Name: _____

Instructor:

3.(6 pts.) Evaluate the derivative of

$$f(x) = 2\arctan(\arcsin(\sqrt{x})).$$

(Recall: $\arctan y = \tan^{-1} y$ and $\arcsin y = \sin^{-1} y$.)

- $\frac{-1}{\sqrt{x-x^2}(1+\arcsin(x))}$
- (b) $\frac{-1}{2\sqrt{x-x^2}(1+[\arcsin(\sqrt{x})]^2)}$
- (c) $\frac{1}{\sqrt{x-x^2}(1+[\arcsin(\sqrt{x})]^2)}$
- (d) $\frac{-1}{\sqrt{1-x}(1+\arcsin(\sqrt{x}))}$
- (e) $\frac{1}{2\sqrt{x-x^2}(1+\arcsin(\sqrt{x}))}$

4.(6 pts.) Evaluate the limit

$$\lim_{x \to 0} (1 - \sin(x))^{\frac{1}{2x}}.$$

- (a)
- (b)
- (c) 1 (d) $e^{-\frac{1}{2}}$ (e) e

Name:

Instructor:

5.(6 pts.) Evaluate $\int_1^2 x \ln x dx$.

- (a) ln(2) 1
- (b) 4

(c) ln(2)

- (d) $2\ln(2) \frac{3}{4}$
- (e) $4\ln(2) 4$

6.(6 pts.) Evaluate the integral

$$\int \tan^2 \theta \sec^4 \theta \, d\theta.$$

(Note: The formula sheet may help.)

(a) $\frac{\tan^5 \theta}{5} + \frac{\tan^3 \theta}{3} + C$

(b) $\frac{\tan^4 \theta}{4} + \frac{\tan^2 \theta}{2} + C$

(c) $\frac{\tan^3 \theta}{3} + C$

(d) $\frac{\sec^5 \theta}{5} + C$

(e) $\frac{\sec^5 \theta}{5} + \frac{\sec^3 \theta}{3} + C$

Name: ______
Instructor:

7.(6 pts.) Evaluate the integral

$$\int \frac{1}{x^2(x^2+1)} \, dx.$$

(Recall: $\arctan x = \tan^{-1} x$ and $\arcsin x = \sin^{-1} x$.)

(a)
$$\ln x + \frac{1}{x} + \arctan x + C$$

(b)
$$\frac{1}{x} - \arctan x + C$$

(c)
$$\frac{-1}{x} - \arctan x + C$$

(d)
$$\ln(x^2) + \arcsin x + C$$

(e)
$$\frac{1}{x} + \ln(x^2 + 1) + C$$

8.(6 pts.) Which of the following gives the trapezoidal approximation with n=6 to the integral

$$\int_0^3 e^{(x^2)} dx$$
?

(a)
$$\frac{1}{4} \left[1 + 2e^{1/4} + 2e + 2e^{9/4} + 2e^4 + 2e^{25/4} + e^9 \right]$$

(b)
$$\frac{1}{4} \left[1 + 4e^{1/4} + 2e + 4e^{9/4} + 2e^4 + 4e^{25/4} + e^9 \right]$$

(c)
$$\frac{1}{6} \left[1 + 4e^{1/4} + 2e + 4e^{9/4} + 2e^4 + 4e^{25/4} + e^9 \right]$$

(d)
$$\frac{1}{2} \left[1 + e^{1/4} + e + e^{9/4} + e^4 + e^{25/4} + e^9 \right]$$

(e)
$$\frac{1}{2} \left[1 + 2e^{1/4} + 2e + 2e^{9/4} + 2e^4 + 2e^{25/4} + e^9 \right]$$

9.(6 pts.)Determine whether the following integral converges or diverges. If it converges, evaluate it.

 $\int_{-2}^{3} \frac{2}{x^3} dx.$

(a) 1

- (b) $\frac{13}{36}$
- (c) The integral diverges.

(d) $2 \ln \left(\frac{27}{8}\right)$

(e) $\frac{5}{36}$

10.(6 pts.) Evaluate the integral

$$\int_2^\infty \frac{1}{x(\ln x)^2} dx.$$

(a) 0

(b) The integral diverges.

(c) $-\ln 2$

(d) $\frac{1}{\ln 2}$

(e) $\frac{1}{2}$

Name: _____ Instructor:

11.(6 pts.)Compute the distance covered by a particle moving along the curve $y = \frac{2}{3}x^{3/2}$ from the point (0,0) to the point $(4,\frac{16}{3})$.

- (a) $\frac{14}{3}$
- (b) $\frac{1}{5\sqrt{5}}$

- (c) ln 4
- (d) $\frac{2}{3}(5\sqrt{5}-1)$ (e) $(5\sqrt{5}-1)$

12.(6 pts.) Which of the following are the orthogonal trajectories to the family of curves $x^2 + 2y^2 = k$?

(a) $y = cx^2$

 $(b) \quad y^2 - x^2 = c$

(c) $y^2 + x^2 = c$

(d) $x = \sqrt{2}y$

(e) x = y + c

Name: _______
Instructor: ______

13.(6 pts.) The solution of the initial value problem

$$xy' = y + x^2 \sin x, \quad y(\pi) = 0$$

is given by

- $(a) \quad 0$
- (b) $y = x \sin x$
- (c) $y = -x(\cos x + 1)$
- (d) cannot be determined from the given information
- (e) $y = \pi + x \cos x$

14.(6 pts.)A certain interest rate in the economy, denoted by r, changes with time according to the differential equation

$$\frac{dr}{dt} = 0.1(5 - r).$$

If this rate is equal to 3 today, use Euler's method with a step size h=2 to estimate its value in 4 years from now.

- (a) 1.5
- (b) 3.72
- (c) 1.8
- (d) 3.5
- (e) 3.4

Name: Instructor:

15.(6 pts.) Consider the following **sequences**:

$$(I) \ \left\{ (-1)^n \frac{n^2 - 1}{2n^2 + 1} \right\}_{n=1}^{\infty} \qquad (II) \ \left\{ \frac{n^2 - 1}{e^n} \right\}_{n=1}^{\infty} \qquad (III) \ \left\{ 2^{1/n} \right\}_{n=1}^{\infty}$$

$$(II) \left\{ \frac{n^2 - 1}{e^n} \right\}_{n=1}^{\infty}$$

$$(III) \left\{2^{1/n}\right\}_{n=1}^{\infty}$$

Which of the following statements is true?

- (a) Sequence II diverges and sequences I and III converge.
- (b) All three sequences converge.
- Sequence I diverges and sequences II and III converge. (c)
- (d) All three sequences diverge.
- Sequence III diverges and sequences I and II converge. (e)

16.(6 pts.) Find $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^n}{9^{n-1}}.$

(a)
$$\frac{9}{11}$$

(a)
$$\frac{9}{11}$$
 (b) $-\frac{18}{7}$ (c) $\frac{4}{3}$ (d) $-\frac{9}{11}$ (e)

(c)
$$\frac{4}{3}$$

(d)
$$-\frac{9}{11}$$

(e)
$$\frac{18}{11}$$

Name: _____

Instructor:

17.(6 pts.) Consider the following series

(I)
$$\sum_{n=2}^{\infty} \frac{3n^2 + 2n + 1}{2n^2 + n}$$

$$(II) \qquad \sum_{n=2}^{\infty} \frac{n^2}{n^3 + 1}$$

$$\sum_{n=2}^{\infty} \frac{n^2}{n^3 + 1}$$
 (III)
$$\sum_{n=1}^{\infty} \frac{3^n}{2(n!)}$$

Which of the following statements is true?

- (a) Only I and III converge
- (b) Only III converges

(c) All three converge

- (d) All three diverge
- Only II and III converge (e)

18.(6 pts.) Consider the following series

$$(I) \quad \sum_{n=3}^{\infty} \frac{\sin(n^2)}{n^2 + 1}$$

(I)
$$\sum_{n=3}^{\infty} \frac{\sin(n^2)}{n^2 + 1}$$
 (II) $\sum_{n=3}^{\infty} \frac{(-1)^n}{\sqrt{n-1}}$.

Which of the following statements is true?

- (a) (I) is absolutely convergent and (II) is conditionally convergent.
- (b) (I) converges and (II) diverges.
- (c) (I) and (II) are both conditionally convergent.
- (d) (I) and (II) are both absolutely convergent.
- (I) and (II) both diverge. (e)

Name: ______
Instructor: _____

19.(6 pts.) Find the radius of convergence R for the power series

$$\sum_{n=1}^{\infty} \frac{(3n+2)(x+1)^n}{5^n(n+1)}.$$

(a) R = 3/5 (b) R = 5/3 (c) R = 5 (d) R = 3 (e) R = 1

20.(6 pts.) Find a power series representation for the function

$$\frac{2}{(9-x^2)}$$

in the interval (-3,3).

- $(a) \qquad \sum_{n=0}^{\infty} \frac{2(x^{2n})}{9}$
- (b) $\sum_{n=0}^{\infty} \frac{2^n (x^{2n})}{9^n}$
- (c) $\sum_{n=0}^{\infty} x^{2n}$

- (d) $\sum_{n=0}^{\infty} \frac{x^{2n}}{9(3^n)}$
- (e) $\sum_{n=0}^{\infty} \frac{2(x^{2n})}{9^{n+1}}$

Name: Instructor:

21.(6 pts.) Which of the power series series given below is the McLaurin series (i.e. Taylor series at a = 0) of

$$\cos(x^2)$$
?

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$
 (b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+1}}{(2n+1)!}.$$
 (c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{(4n)!}.$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{(4n)!}$$

(d)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{(n)!}.$$

(e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{(2n)!}.$$

22.(6 pts.) Which of the polynomials shown below is the third degree Taylor polynomial of $f(x) = \frac{1}{(1-x)^2}$ at a = -1?

(a)
$$1 + 2x + 3x^2 + 4x^3$$

(b)
$$\frac{1}{2^2} + \frac{2}{2^3}x + \frac{3}{2^4}x^2 + \frac{4}{2^5}x^3$$

(c)
$$\frac{1}{2^2} + \frac{2!}{2^3}(x+1) + \frac{3!}{2^4}(x+1)^2 + \frac{4!}{2^5}(x+1)^3$$

(d)
$$\frac{1}{2^2} + \frac{2}{2^3}(x+1) + \frac{3}{2^4}(x+1)^2 + \frac{4}{2^5}(x+1)^3$$

(e)
$$1 + (x+1) + (x+1)^2 + (x+1)^3$$

Name:

Instructor:

23.(6 pts.) Which line below is the tangent line to the parameterized curve

$$x = \cos t + 2\cos(2t), \qquad y = \sin t + 2\sin(2t)$$

when $t = \pi/2$?

 $(a) \quad y = -x + 3$

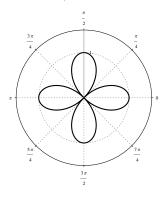
(b) y = 4x + 9

(c) y = -4x - 7

 $(d) \quad y = x + 3$

(e) y = 1

24.(6 pts.) Which integral below computes the length of the parameterized curve $x(t) = 1 + e^{2t}$, $y(t) = \sin(2t)$


for $0 \le t \le 1$?

- (a) $\int_0^1 \sqrt{2e^{2t} + 2\cos(2t)} \ dt$
- (b) $\int_0^1 \sqrt{(1+e^{2t})^2 + \sin^2(2t)} dt$
- (c) $\int_0^1 \sqrt{4e^{4t} + 4\cos^2(2t)} dt$
- (d) $\int_{0}^{1} \sqrt{1 + \sin^{2}(2t)} dt$
- (e) $\int_0^1 \sqrt{(1+e^{2t}) + \sin(2t)} \ dt$

Name: ______

25.(6 pts.) Find the area of the region enclosed by the polar curve $r = \cos(2\theta)$, $0 \le \theta \le 2\pi$.

(Note: The formula sheet may help here.)

- (a) 2π
- (b) 2
- (c) $\frac{\pi}{2}$
- (d) $\frac{\pi^2}{2}$
- (e)

Name: _______
Instructor:

The following is the list of useful trigonometric formulas:

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin 2x = 2\sin x \cos x$$

$$\sin x \cos y = \frac{1}{2}(\sin(x - y) + \sin(x + y))$$

$$\sin x \sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$$

$$\int \sec \theta d\theta = \ln|\sec \theta + \tan \theta| + C$$

$$\int \csc \theta d\theta = \ln|\csc \theta - \cot \theta| + C$$

$$\int \csc^2 \theta d\theta = -\cot x + C$$

Name:		
Instructor:	ANSWERS	

Math 10560, Final Exam: May 7, 2013

- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.
- No calculators are to be used.
- Turn off and put away all cell-phones and similar electronic devices.
- No head phones are not allowed.
- Put away all notes and formula sheets where they cannot be viewed.
- The exam lasts for two hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 15 pages of the test.
- Hand in the entire exam.

		PLEAS	E MAR	K YOU	R ANSW	VERS W	TTH A	N X, no	ot a circ	ele!	
1. 2.	(•)(a)	(b) (b)	(c) (c)	(d) (•)	(e)	15. 16.	(a) (a)	(b) (b)	(o)	(d) (d)	(e) (•)
3. 4.	(a) (a)	(b)	(e)	(d) (•)	(e) (e)	17. 18.	(ullet)	(•) (b)	(c)	(d) (d)	(e) (e)
5. 6.	(a) (•)	(b) (b)	(c) (c)	(•) (d)	(e)	19. 20.	(a) (a)	(b) (b)	(•) (c)	(d) (d)	(e) (•)
7. 8.	(a) (•)	(b) (b)	(e)	(d) (d)	(e) (e)	21. 22.	(a) (a)	(b) (b)	(c)	(d) (•)	(e)
9. 10.	(a) (a)	(b)	(e)	(d) (•)	(e)	23. 24.	(a) (a)	(•) (b)	(c) (•)	(d) (d)	(e) (e)
11. 12.	(a) (•)	(b)	(c) (c)	(•) (d)	(e) (e)	25.	(a)	(b)	(•)	(d)	(e)
13. 14.	(a) (a)	(b) (•)	(e)	(d) (d)	(e) (e)						